Batoid locomotion: effects of speed on pectoral fin deformation in the little skate, Leucoraja erinacea.

نویسندگان

  • Valentina Di Santo
  • Erin L Blevins
  • George V Lauder
چکیده

Most batoids have a unique swimming mode in which thrust is generated by either oscillating or undulating expanded pectoral fins that form a disc. Only one previous study of the freshwater stingray has quantified three-dimensional motions of the wing, and no comparable data are available for marine batoid species that may differ considerably in their mode of locomotion. Here, we investigate three-dimensional kinematics of the pectoral wing of the little skate, Leucoraja erinacea, swimming steadily at two speeds [1 and 2 body lengths (BL) s-1]. We measured the motion of nine points in three dimensions during wing oscillation and determined that there are significant differences in movement amplitude among wing locations, as well as significant differences as speed increases in body angle, wing beat frequency and speed of the traveling wave on the wing. In addition, we analyzed differences in wing curvature with swimming speed. At 1 BL s-1, the pectoral wing is convex in shape during the downstroke along the medio-lateral fin midline, but at 2 BL s-1 the pectoral fin at this location cups into the flow, indicating active curvature control and fin stiffening. Wing kinematics of the little skate differed considerably from previous work on the freshwater stingray, which does not show active cupping of the whole fin on the downstroke.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Pectoral fin locomotion in batoid fishes: undulation versus oscillation.

This study explores the dichotomy between undulatory (passing multiple waves down the fin or body) and oscillatory (flapping) locomotion by comparing the kinematics of pectoral fin locomotion in eight species of batoids (Dasyatis americana, D. sabina, D. say, D. violacea, Gymnura micrura, Raja eglanteria, Rhinobatos lentiginosus and Rhinoptera bonasus) that differ in their swimming behavior, ph...

متن کامل

Comparative punting kinematics and pelvic fin musculature of benthic batoids.

Although the majority of batoid elasmobranchs, skates and rays, are benthically associated, benthic locomotion has been largely overlooked in this group. Only skates have been previously described to perform a form of benthic locomotion termed "punting." While keeping the rest of the body motionless, the skate's pelvic fins are planted into the substrate and then retracted caudally, which thrus...

متن کامل

The population dynamics of little skate Leucoraja erinacea, winter skate Leucoraja ocellata, and barndoor skate Dipturus laevis: predicting exploitation limits using matrix analyses

Over the past thirty years catches of skates have increased in the western Atlantic as a result of targeted fisheries and as by-catch. Presently, sustainable harvest levels for skates in the western Atlantic are unknown. Available life history information was used to model three western Atlantic skate species, little skate Leucoraja erinacea, winter skate Leucoraja ocellata, and barndooor skate...

متن کامل

Structure and mechanical implications of the pectoral fin skeleton in the Longnose Skate (Chondrichthyes, Batoidea).

Animal propulsion systems are believed to show high energy and mechanical efficiency in assisting movement compared to artificial designs. As an example, batoid fishes have very light cartilaginous skeletons that facilitate their elegant swimming via enlarged wing-like pectoral fins. The aim of this work is to illustrate the hierarchical structure of the pectoral fin of a representative batoid,...

متن کامل

Rajiform locomotion: three-dimensional kinematics of the pectoral fin surface during swimming in the freshwater stingray Potamotrygon orbignyi.

Rajiform locomotion in fishes is dominated by distinctive undulations of expanded pectoral fins. Unlike other fishes, which typically interact with the fluid environment via multiple fins, undulating rays modulate a single control surface, the pectoral disc, to perform pelagic locomotion, maneuvering and other behaviors. Complex deformations of the broad, flexible pectoral fins occur as the und...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • The Journal of experimental biology

دوره 220 Pt 4  شماره 

صفحات  -

تاریخ انتشار 2017